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The United States military frequently has difficulty retaining enlisted personnel beyond
their initial enlistment. A bonus program within each service, called a Selective
Reenlistment Bonus (SRB) program, seeds to enhance reenlistments and thus reduce
personnel shortagesin critical military occupational speciaties (MOSs). The amount of
bonusis set by assigning “SRB multipliers’ to each MOS. We develop a nonlinear
integer program to select multipliers which minimize afunction of deviations from
desired reenlistment targets. A Lagrangian relaxation of alinearized version of the
integer program is used to obtain lower bounds and feasible solutions. The best feasible
solution, discovered in a coordinate search of the Lagrangian function, is heuristically
improved by apportioning unexpended funds. For large problems, a heuristic variable
reduction is employed to speed model solution. U.S. Army data and requirements for
FY 87 yield a0-1 integer program with 12,992 binary variables and 273 constraints,
which is solved within 0.00002% of optimality on an IBM 3033AP in lessthan 1.7
seconds. More general models with up to 463,000 binary variables are solved, on
average, to within 0.009% of optimality in lessthan 1.8 minutes. The U.S. Marine Corps
has used a simpler version of this model since 1986.
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Setting Military Reenlistment Bonuses

Dean D. DeWolfe, James G. Stevens, and R. Kevin Wood
Department of Operations Research, Naval Postgraduate School, Monterey,
California 93943

The United States military frequently has difficulty retaining enlisted personnel
beyond their initial enlistment. A bonus program within each service, called a
Selective Reenlistment Bonus (SRB) program, seeks to enhance reenlistments and
thus reduce personnel shortages in critical military occupational specialties (MOSs).
The amount of bonus is set by assigning “SRB multipliers” to each MOS. We
develop a nonlinear integer program to select multipliers which minimize a function
of deviations from desired reenlistment targets. A Lagrangian relaxation of a lin-
earized version of the integer program is used to obtain lower bounds and feasible
solutions. The best feasible solution, discovered in a coordinate search of the
Lagrangian function, is heuristically improved by apportioning unexpended funds.
For large problems a heuristic variable reduction is employed to speed model
solution. U.S. Army data and requirements for FY87 yield a 0-1 integer program
with 12,992 binary variables and 273 constraints, which is solved within 0.00002%
of optimality on an IBM 3033AP in less than 1.7 seconds. More general models
with up to 463,000 binary variables are solved, on average, to within 0.009% of
optimality in less than 1.8 minutes. The U.S. Marine Corps has used a simpler
version of this model since 1986. © 1993 John Wiley & Sons, Inc.

The United States’ military services have utilized Selective Reenlistment Bo-
nus (SRB) programs since the early 1960s to improve retention of enlisted
personnel in specially designated military occupational specialties (MOSs). Ex-
amples of MOSs in the U.S. Army include Fighting Vehicle Infantryman, Heavy
Antiarmor Weapons Infantryman, Electronic Warfare/Intercept Aviation Sys-
tem Repairer, Avionics Mechanic, etc. The SRB programs are selective in that
bonus levels can be set separately for each of several years-of-service intervals
within each MOS. The years-of-service intervals are “zones,” and we refer to
an MOS/zone combination as a “cell.” The SRB programs, the framework for
which was established by Congress in 1974, are major personnel management
tools that encourage eligible personnel to reenlist in their cells instead of choosing
to leave military service. The cells in which reenlisting personnel receive bonuses
as well as the amount of bonus is determined by the use of “SRB multipliers”
of the basic reenlistment bonus. The basic bonus is monthly base pay times
number of years of reenlistment which can, within limits, be chosen by the
person reenlisting.
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Within each MOS, an SRB multiplier can be applied at reenlistment points
that fall between 21 months and 14 years of active duty service (ADS). The
period between 21 months and 6 years of ADS is designated as Zone A, between
6 and 10 years as Zone B and between 10 and 14 years as Zone C. Personnel
ineligible for an SRB are designated for modeling purposes as Zone D.

Each cell has a desired manning level determined by the number of positions
required within the organization. Given current manning levels and projected
losses, the desired number of cell reenlistments, i.e., a reenlistments target, is
established for each cell. An MOS also has a reenlistment target that is just the
sum of the targets of its subordinate cells. In many cells and parent MOSs,
targets will be met or exceeded without any added inducement. In others, how-
ever, an unacceptable target shortfall may exist which can only be reduced by
offering a reenlistment bonus. Those cells and MOSs with unacceptable target
shortfalls compete for the available budget to acquire nonzero SRB multipliers
and thus increase their attractiveness to soldiers eligible to reenlist (assigning a
multiplier of 0 is equivalent to no bonus).

Upon reenlistment in a cell designated to receive an SRB, Congressional
directives, DoD Instructions 1304.21 (1985) and 1304.22 (1983), authorize to an
individual a bonus amount equal to monthly base pay multiplied by the number
of years of additional obligated service and by the cell’s SRB multiplier, subject
to a maximum of $30,000. The service member immediately receives 50% of
the bonus with the residual apportioned in equal annual payments over the
remainder of the reenlistment. In addition, Congressional directives stipulate
that a cell’s multiplier may be any value from 0 to 6 and that only 10% of all
bonuses awarded may be for amounts greater than $20,000. Each service’s pres-
ent implementation of this policy is more restrictive than the Congressional
directives. For example, the U.S. Army allows multipliers in multiples of 0.5
and restricts multipliers to a maximum of 3, 3, and 0 in zones A, B, and C
respectively, with a bonus ceiling of $20,000. The U.S. Marine Corps, on the
other hand, uses only integer multipliers with a maximum of 5, 4, and 3 in the
three zones, respectively, and a bonus ceiling of $16,000.

The overall SRB program objective during each cycle (one year) is, in con-
junction with other programs, to minimize the effect of critical shortages on
military force readiness. The military pursues this objective by frequently up-
dating the SRB multipliers during each cycle in response to changing needs and
resources. During a program update, and prior to this modeling effort, no single
objective function existed to evaluate alternate sets of proposed multipliers for
the approximately 1000 cells typically eligible for bonuses in the U.S. Army or
U.S. Marine Corps. Instead, the office responsible for the SRB program relied
primarily on experience to manually assign and judge a particular set of mul-
tipliers. For each cycle, a combination of SRB multipliers was subjectively and
iteratively modified in a spreadsheet model until it was estimated to satisfy
budgetary and Congressional constraints.

The intent of this modeling effort is to provide a much-needed automated
decision support tool for the immediate assignment of SRB multipliers, and also
to provide an ability for the analysis of real and “what=if”” changes to the military
force structure and environment that affect an SRB program. The objective of
the model is to minimize a function of deviations from reenlistment targets
subject to budgetary and Congressional constraints. One approach to this prob-
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lem is to model the assignment of SRB multipliers as a nonlinear stochastic
mathematical programming problem. Although this approach is of interest and
is currently under investigation, it is not without serious difficulties that include
the SRB problem’s inherent nonlinearity and the large number of decision vari-
ables. Therefore, we have chosen to begin by modeling the assignment of SRB
multipliers as an integer nonlinear program (INLP) using the estimates of pa-
rameters, such as response rates to various multiplier levels, presently available
for the manual assignment of SRB multipliers. This essentially deterministic
approach is reasonable in light of the environment in which the assignment
method is to be used: Close monitoring of program responses, needs and re-
sources allows almost real-time update of parameter estimates and resource data.
New SRB multipliers, determined with updated data, can be established multiple
times during a cycle. Also, once resources for an SRB program are exhausted
or reenlistment objectives are obtained, the program is simply halted and re-
sumed at the beginning of the next cycle.

Recent work by Lovell and Morey [11} on setting monetary inducement levels
by MOS for recruitment, as opposed to reenlistment, might appear to be similar
to our work. However, their problem and approach are significantly different.
They wish to minimize the cost of meeting recruitment targets by allocating
enlistment bonuses and college tuition funds to each MOS. The levels of the
monetary awards are not decision variables as in the SRB problem, but rather,
the decision variables are the number of awards to make for each MOS. Fur-
thermore, the recruitment model has no explicit budget limitation and does not
makes use of a response rate function. On the other hand, the use of our
methodology to a recruitment problem might be difficult in that our objective
function is computationally tractable because it is separable by MOS. Separa-
bility is reasonable because the bonus levels in one MOS have little effect on
reenlistments in other MOSs as there are few opportunities to switch between
MOSs. For the recruitment problem, an objective function analogous to ours
would probably not be separable by MOS since setting a large award for one
MOS could draw recruits away from enlisting in other MOSs.

To facilitate solution of our basic INLP, it is reformulated as an integer linear
program (ILP). A coordinate search of a Lagrangian function, created from the
ILP, provides lower bounds and feasible solutions. The best feasible solution,
improved with a greedy heuristic to apportion unexpended funds, provides a
near-optimal set of SRB multipliers.

The scope of this modeling effort is limited to a single year (cycle), although
multiyear research is being conducted (General Research Corporation [9]); no
attempt is made to forecast sets of multipliers for subsequent years based on
expected retention resulting from the current year’s set of multipliers. The model
allocates that part of the budget not obligated for annual payments for bonuses
from previous years and does not consider the effects of remaining bonus pay-
ments that will have to be apportioned in future years. Other assumptions re-
garding the model are addressed in the succeeding sections of this article.

1. MODEL FORMULATION AND DESCRIPTION

In this section the SRB multiplier problem is formulated first as an INLP
using Congressional and budgetary restrictions. Constraint functions are defined
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and described and the rationale behind the selection of the objective function
is explained. For explanatory and computational purposes, the problem is then
converted to an ILP. The model being described in this section is for the U.S.
Army. However, development of a model for another service would be similar.

An important assumption of the model is that there are no interactions among
MOSs. Interactions exist when reenlistments in one MOS affect another MOS.
If it is determined that significant interactions do exist they can be handled by
aggregating the affected MOSs. Also, although movement between MOSs can
occur during reenlistment (for example, the Army’s BEAR program) these
effects are considered negligible. Note that the formulation of the model is quite
general in that it can accommodate any alternate objective function as long as
the assumption of no MOS interactions is maintained.

The decision variables for this model are the SRB multiplier values for each
cell. Although Congressional requirements allow fractional multiplier values,
the U.S. Army only allows multiplier increments of 0.5. To simplify notation,
we model integer multiples of this allowed fraction.

1.1 Model Development

MODEL P1
Indices:
h=1234 zone A, B, C, or D, respectively.
l=1,2,...,n MOSs.
t=3,4,5,6 years of reenlistment.
Data:
Aus A desired manning level in cell 2/ and MOS .
B available budget for new SRBs.
Cy average cost of training personnel to cell Al.
Dy, reenlistment target for cell Al.
Ups, Upy minimum and maximum permissible multiplier
in cell Al.
Ny number eligible for reenlistment in cell Al.
Py average monthly base pay of an individual in
cell Al.
Ry(x) reenlistment response rate in cell 2/ when mul-
tiplier x,, is offered.
Spu(Xn) fraction eligible in cell 2/ who reenlist for ¢ years
when multiplier x, is offered.
Wy exogenous skill weight for cell Al.
Sn(Xn) fraction in cell Al who reenlist for more than
$20,000 when multiplier x,, is offered.
Variables:
Xy integer representation of the bonus multiplier
level in cell Al.
Functions:

cf(xy, Xy, X3, Xy)  total penalty associated with MOS [ given the
multipliers in its subordinate cells.
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di(xy, xa, X3, Xy) penalty associated with MOS [ given the mul-
tipliers in its subordinate cells.

Fr(X) cost for setting the multiplier at x,, in cell Al.

(1) total number of bonus recipients in cell 4/ due
to Xnre

DPriXn) total number of bonus recipients receiving over

$20,000 in cell Al due to xy,.

Formulation:

minimize 2 clxy, Xap X31, Xap),
1

subject to Z 2 ru(xy) = B, (1)
I h
> 2 (pulew) — 0.1 ty(xw)) =< 0, (2)
I h
U = Xy = Uy, and integer V &, [.

In defining the objective function, the model assumes there are no interactions
among MOSs. However, each cell’s effect on the objective function is dependent
upon the performance of the other cells within the same MOS. Therefore, the
objective function is just the sum of each MOS’s penalty c/(xy;, Xy, X3, X4). We
note that x4, = 0. However, this variable is included in the formulation to reflect
the fact that Zone D reenlistments do affect the objective function. The budget
constraint (1) regulates the estimated amount of monetary resources allowed
across all cells. Finally, the high-level bonus constraint (2) enforces the Congres-
sional requirement that no more than 10% of all SRB bonuses exceed $20,000.
At the present time, bonuses are capped at $20,000. However, we model the
SRB multiplier problem with the high-level bonus constraint as future compe-
tition with civilian industry in employing specially trained personnel, may require
bonuses in excess of $20,000.

The resource function,

Fulxn) = Ru(xm)Ny X 0.5x,Py, [2 tshh(xhl):lv 3

t

represents the estimated number of dollars that must be allocated to offer in-
dividuals in cell £/ an SRB multiplier of x;;, assuming that base pay does not
influence reenlistment duration. This function is the product of the estimated
number of reenlistments in cell hl, R, (x,)Ny, and 50% of the estimated bonus
due upon reenlistment, 0.5x,,Py [Z¢.3 Sy (x,)]. We note that the forms of the
resource function and other functions could be simplified if the data were sim-
plified. However, the data are described exactly as they are available and are
reported this way for the sake of historical accuracy.
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The total bonus function,

_ 0, if Xp = 0
bl = {Rhl(xhl)th if x> 0}’ @

represents the number of personnel predicted to reenlist in cell 4/ given a nonzero
multiplier. The function #,(x,,) is necessary to calculate the maximum number
of personnel allowed bonuses greater than $20,000. In general, this function is
expected to have decreasing slope as the cell’s SRB multiplier increases until
for some bonus level (probably above the maximum allowed level) all eligible
personnel reenlist.

The high-value bonus function,

Pul(w) = Sun)tuiXns)s (5)

represents the number of personnel in cell Al predicted to reenlist for bonus
amounts greater than $20,000. This function is 0 if no one in cell 4/ can reenlist
for greater than $20,000 and rises to the total number of predicted reenlistments,
t(xn), when all reenlistment bonuses in cell A/ exceed $20,000.

There is some leeway in defining the objective (penalty) function for P1 and
we claim only that our objective function is sensible and, in practice, has given
intuitively appealing solutions. Other objective functions or modifications of our
objective function can be readily incorporated into our solution methodology.
The following list is the set of guidelines we used in developing our objective
function.

(a) If estimated responses for each cell in MOS [ exactly meet target values Dy, for
each cell, the penalty, ¢/(x,;, Xy, X3, Xxy), should be 0.

(b) As estimated deviations from cell targets rise, so should the penalty. Furthermore,
the penalty should rise superlinearly in these deviations so as to spread shortages
among cells.

(c) Standard military policy allows some assignment of personnel within an MOS to
jobs for which they may be over- or underqualified. This will sometimes correspond
to personnel in one cell of an MOS being assigned to a position which ideally should
be filled by someone in another cell of that MOS. In some way then, cell deviations
in an MOS at full strength should be penalized less than in an MOS which is
understrength. Consequently, the penalty function must also reflect deviations from
the MOS target defined as 2, Dy,

(d) Some normalization of penalties by desired cell and MOS manning levels must take
place since a shortage of 5 people in a cell or MOS containing 1000 people is more
casily tolerated than a shortage of 5 in a cell or MOS containing 100. (The impor-
tance to the military of a cell or MOS is not particularly dependent on its nominal
size.)

(e) The alternative to enticing people to reenlist with a high SRB multiplier is to recruit
and train new personnel. Consequently, given two cells of identical size and shortfall,
the cell with the higher training cost should have a larger penalty and hence have
a greater propensity to be assigned a positive multiplier.

Each MOS’s penalty function,
clxus %o X, Xag) = 2 (1D — Rusxid) Nul?Y(CrWial Ap)(di(x sy X, X1, Xa1))s
7

(6)
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/Ah (7)

is the sum of a product of three sets of terms. The first term, resulting from
guidelines (a) and (b),

where

di(xy, Xy, X3, xg) = 1 + 2 (Dw — Ruy(xw)Nw)
&

(D — Ru(xu)Nyl?,

represents the deviation from the desired number of reenlistments in each cell
hl raised to the pth power. A cell’s deviation is calculated by taking the absolute
difference between the desired number of reenlistments D,; and the estimated
number of reenlistments R, (x;,)N,,. For a cell with a shortfall, the cell’s deviation
is decreasing as reenlistments rise due to increasing the SRB multiplier until,
for some multiplier, it may begin to increase as the shortfall becomes a surplus.
Any reasonable value for p > 1 has the desired effect of penalizing those cells
with large deviations much more severely than smaller ones, which tends to
even out shortages and surpluses among cells. For our purposes we have chosen
p = 2, as this yields objective function units of weighted dollars. We also note
that it is a simple generalization to allow shortages and surpluses to be weighted
differently but we ignore this for notational simplicity.

Given the cell deviation, the second term C,,W,,/A,, incorporates the training
cost as referred to in guideline (e), a subjective weight, and normalization by
desired cell manning level as per guideline (d). The cost Cy, is the term presently
used in the manual assignment of SRB multipliers to compare target deviations
across cells. In addition, a few cells may be considered more critical than others
due to special attributes other than cost, e.g., special operational forces. The
weight W), is an exogenous factor which permits the user to consider special cell
attributes and manually override other model factors. However, in most cases
we expect W, to be set to a nominal value of 1 and we do this in all computations
reported in this article. Finally, division by A,, normalizes the deviation of a cell
with respect to its ideal strength. The product of the first two terms of (6) is
then the “basic” penalty function for cell Al.

The third term (7) is a measure of deviation from the desired manning in
MOS !. This unitless term modifies the effect of each cell’s basic penalty within
an MOS and is motivated by guideline (c) and normalized as per guideline (d).
If the MOS, taken as a whole, is on target, then the sum of basic cell penalties
define the penalty associated with the MOS. However, if the MOS also deviates
from desired strength this worsens the individual cell penalties.

The response rate of a cell A/ to an SRB multiplier Ry (x;) is critical in.
predicting each cell’s expected deviation and resource requirements. We used
the same response rate estimates as the U.S. Army uses in their manual com-
putation of SRB multipliers. More sophisticated methods for determining re-
sponse rates (Cymrot [2]), which take into consideration the effects of demo-
graphics and economic conditions, have been implemented by the Marine Corps
and are under study for adoption by the U.S. Army (Streff {12]). These results
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should improve the trustworthiness of response rate estimates and are easily
incorporated into this model.

Data required for estimating the fraction of reenlistment eligible soldiers in
cell 4l who reenlist for ¢ years when multiplier x,, is offered, s,,(x,,), are available,
but have not yet been compiled; consequently we estimate it from the average
duration of reenlistment in cell A4l. As indicated, s,,(x;;) is dependent on x,. If
Xy, is permitted to increase to levels that allow SRB bonuses greater than $30,000,
we expect the majority of personnel to reenlist for a duration not to exceed the
time required to maximize their SRB.

As presently modeled, P1 is an INLP. The special structure of this problem
and the nonlinearity in the objective function and both complicating constraints
make solution by standard branch-and-bound or dynamic programming im-
practical or impossible. Given these difficulties, we reformulate the problem
into an ILP for solution using a specialized procedure.

1.2. Imteger Linear Program Conversion

Here, the model is transformed from an INLP to an ILP to facilitate its
solution. The number of explicit constraints does increase by the number of
MOSs, but this causes little difficulty with our solution approach. To facilitate
notation let the vector 7 be a 4-tuple with range encompassing potential mul-
tipliers in the four zones of any MOS, and M, represent the set of allowable
multipliers in MOS [; i.e., M, = {fi = (my, my, m3, my): uy = my, < Gy, m,
integer, h = 1, 2, 3, 4}. Then, the ILP equivalent of Model 1 is:

MODEL P2
Indices:
m A vector whose values represent a multiplier
set in an MOS. m = (m,, m,, ms, my).
h=1234 zone A, B, C, or D, repsectively.
[=1,2,...,n MOS.
Functions:
Cl cmy, my, my, my)
Tmi Z ru(my)
h
Ly 2 tu(my,)
h
Pmi Z Prlmy)
h
Variables:
VYl A binary variable representing the multiplier

levels in the cells of MOS [. For m € M,,
ym = lif the Zone A multiplier is /m,, the Zone
B multiplier is m,, the Zone C multiplier is m;,
and the Zone D multiplier is m,. Otherwise
ym = 0.
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Formulation:

minimize z 2 Crit Yl

T meM,
subject to >, > raym = B, 8)
T mEM,
> 2 (pm — 0.1 tr)ym =0, ©)
T meM,
Ymt = 1v v l7 (10)
meM,

yaw€10,1}, V meM,L

2. SOLUTION METHODOLOGY

Theoretically, the SRB model P2 could be solved by a standard, LP-based
branch-and-bound algorithm. However, given the potential size of the model
(10,000 to 500,000 0-1 variables), and the desire to implement the model on a
microcomputer, this approach is not attractive. The SRB model is a generali-
zation of the multi-item scheduling model of Sweeney and Murphy [13], in that
their model contains ‘‘multiple choice” constraints (10) and a single budget
constraint (8) but no additional complicating constraints such as (9). Their
branch-and-bound method could be generalized to the SRB model, but their
method would also require solving the LP relaxation of P2. Also, Bean [1]
describes a similar method for solving problems of the form of P2 but, once
again, solving the LP relaxation of P2 would be required. We also note that the
computational experiences discussed by Sweeney and Murphy and by Bean are
limited to problems with at most a few thousand 0-1 variables.

In order to avoid solving large LPs we have taken an approach to solving P2
based on solving a Lagrangian relaxation of that model (see Fisher [7] for an
overview of Lagrangian relaxation). We invariably obtain an excellent lower
bound, equivalent to the LP-based lower bound, from this solution technique.
In the process we also obtain feasible solutions to P2 which are heuristicailly
improved to yield a high-quality final solution to P2. Very modest optimality
gaps have obviated the need for any sort of enumeration approach.

Let A = (A, Ay). The relaxed formulation of P2 is

1** 2**
min CriYmt + M| D Y — B+ A w — 0.1 b)) Y
max " 21 1Vl 1<2’ 1Y ) 2(2{ (P 1)y I>
=0 2 Ym = 1, v I
s.t mieM,;

YVl € {05 1}’ V me Ml’ l
(LR-P2)
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where the inner portion of the objective function may be equivalently written

F(A) = min D, (G + Mray + AP — 0.1 t5)) v — A\B. 1y
y q

For fixed values of A; and A,, the inner minimization (11) selects the set of
multipliers that corresponds to the subproblem

min {cm + A+ A pa — 0.1 tz)), (12)

meM,

for each MOS /. The worst subproblem in the case of the U.S. Army would
have [M,| = 77 = 49 different values of 7 to investigate corresponding to an
MOS with allowed multiples of 0.5 from 0 through 3 for zones A and B with
multipliers fixed at 0 for zones C and D. Note here also that the optimal solution
value for LR-P2, denoted F(A*), is equivalent to the lower bound from the LP
relaxation of problem P2 since the LP solution to the inner minimization of LR-
P2 is intrinsically integer (Geoffrion [10]).

The outer maximization problem LR-P2 is concave and could be solved using
subgradient optimization; however, obtaining convergence with subgradient op-
timization can be difficult in practice. Therefore, a coordinate search of the
Lagrangian function is implemented for the two dimensions of this model. In
Section 2.1 we briefly discuss the coordinate search procedure and point out
some special techniques used to make this procedure efficient. Since F(A*)
obtained from the coordinate search is equivalent to the LP lower bound for
P2, F(A*) might be a poor bound and we might be unable to prove that the
feasible solution we obtain is good because of a poor bound. However, in Section
2.2 we provide theoretical evidence that, because of the SRB problem’s special
structure, the bound should be good: We show that the ratio of the LP lower
bound to the value of the optimal integer solution converges to 1 as the number
of MOSs becomes large. Furthermore, although we cannot show that our heu-
ristic will always give a good solution, we can show that an “LP rounding”
heuristic will give a good solution which lends credibility to the use of a heuristic
approach.

2.1. Coordinate Search Procedure

The lower bound for A is zero. When A = 0 the multiplier set chosen for each
MOS corresponds to the set of multipliers whose attributes have minimum pen-
alty. If P2 is feasible when A = 0 (a highly unlikely situation in practice), then
F(0) = F(A*) and we are done. If A = 0 fails to provide a feasible solution for
P2, then for values of A; and A, sufficiently large, the solution to (12) for each
MOS is a multiplier set with attributes having minimum cost, minimum bonus
constraint contribution, and maximum penalty; i.e., the model would choose
MOS multiplier sets that correspond to the minimum permissible SRB levels
for all cells. If this solution is feasible, an initial upper bound for P2 has been
established and a coordinate search is performed to identify A*. Values for A,
and A, great enough to force the selection of minimum cell multipliers for all
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cells without obtaining a feasible solution for P2 indicate that a A = 0 does not
exist that provides a feasible solution and the problem is trivially infeasible. This
situation will only arise if the minimum cell multipliers require a violation in
either the budget or bonus constraint. However, in practice this does not occur
since, usually u;,, = 0 for all # and I.

The coordinate search on the Lagrangian function repetitively fixes one of the
two components of A while finding the value of the other component that max-
imizses F(A). Once each component is bounded, the optimization in each co-
ordinate can be carried out by bisection search given the slope of F(A) in the
appropriate coordinate. These slopes are simply the values of 1** for the first
coordinate and 2** for the second coordinate. Because the one-dimensional
optimizations are so simple, it is also possible to use a very simple cutting plane
algorithm in place of the bisection search. The “master problem” of the cutting
plane algorithm consists of calculating the intersection of two lines. Empirically,
we have found that the most efficient approach is to use the cutting plane
algorithm for the first few iterations and then switch to the bisection search.

Throughout the coordinate search, those feasible sets of SRB multipliers en-
countered while solving for A* provide upper bounds for P2. The current best
known set of multipliers is stored as the incumbent solution to P2 with an attempt
made to improve the last such solution using a marginal rate-of-return heuristic
as described in Section 4.

2.2. Model P2’s Special Structure

The special structure of P2 consists of the generalized upper bound (GUB)
constraints (10) and the fact that if the LP relaxation of P2 is feasible, a feasible
integer solution to P2 can always be obtained. That this is true can be seen as
follows. Suppose we are given an extreme point solution to the LP-relaxation

of P2 and that for MOS [, y is fractionated form = m', m?, . . . , m/ (for our
problem j is at most 3). Let m' = (m|, mj, m}, m,) where m; = min{m},
mi, ..., mj}. Now, m' € M, and setting yz, = 1 for MOS [ will always

contribute no more to the left-hand sides of (8) and (9) than will the original
fractionated solution and is thus feasible. This process could be repeated for
each MOS with fractionated variables and will be referred to as the “rounded
LP solution”.

Let G} and G} represent the optimal objective function values for P2 and
its LP relaxation, respectively, for an SRB problem with » MOSs and k com-
plicating constraints. Because of the GUB structure of constraint (10), k is also
the maximum number of such constraints in which fractionation can occur in
the optimal solution to the LP relaxation of P2. In addition, let GLf- be that
portion of GLf corresponding to the n — k or more variables that are integer
valued in the optimal solution. By construction, and since P2 is a minimization
problem, 0 = Gif- = G = G, Next, let g, represent the difference between
the maximum and minimum objective function contributions for altowable mul-
tiplier sets within MOS /. This value bounds the impact to the objective function
of using the rounded LP solution over the continuous LP solution for MOS /.
We assume that g; is finite and let g represent the supremum over / of g;.

PROPOSITION 1: If as n — », GIf — «, then GIX/GF — 1.
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PROOF: Since g is nonnegative, finite, and bounds the worst possible ob-
jective function increase for each fractionated MOS ‘“‘rounded” to integrality
then, Gif- = G}f = G = GYf- + kg which implies G3f- — » as n — «. But
this also implies that as n — «,

Gh _ G-+ kg G +ig _, , Ig
tSey=Tew -~ ox Tart

Q.E.D.

Therefore, the LP and IP solutions for P2 will be close for large n.

From the above discussion and proof it is clear that, for large n, a good
approximate solution to P2 could be obtained using the “LP rounding proce-
dure”. Although we will not pursue this procedure, since it requires solving the
LP relaxation, it is possible to obtain an a priori (before solving the model but
after establishing its coefficients) bound on the error of such a solution. This
bound may be used as a performance measure of our Lagrangian relaxation
procedure. Let G, be the objective value of the rounded LP solution of P2.
Also, let GLf represent P2’s optimal objective function value without compli-
cating constraints (8) and (9). Define the error of the LP rounding solution as

_ Gnk — GLI;(
eIr = — —p
Gnk

PROPOSITION 2: An a priori upper bound for error for the LP rounding
solution of P2 is
kg
G

err =

PROOF: Since GIf = G = G = G, = GI¥- + kg = GIf + kg,

_qr LP 4 4o P 4 i 5 =
orp = Ok —Guk _ G | G kg | _Gu + kg | _ kg _ kg
G Gk G Gt G Gif

Q.E.D.

For the SRB problem with U.S. Army FY87 data and Congressional restric-
tions, g is approximately 0.08% of GLf for n = 272. This yields an error bound
of approximately 2% for the LP rounding procedure.

3. VARIABLE REDUCTION

The model may operate in two different environments depending upon the
maximum bonus multiplier and maximum monetary bonus parameters. A level
of either parameter that restricts the maximum monetary bonus to $20,000 or
less effectively eliminates the high-level bonus constraint from the model. If this
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is the case, LR-P2 is reduced to

min Y Ny + )‘1(2 > Tam — B)
max Y | mEM, | mEM, PIR
=0 s.t. 2 Yar = 1, v [ ! (LR_ )

meM,

ym € {0, 1}, vV meM,l

3.1. Reduction of Case 1—LR-P2R

Analysis of the objective function indicates that variables can exist in LR-P2R
that are dominated, i.e., will have a value of 0 in the optimal solution. Elimi-
nation of these dominated variables reduces model storage requirements and
can save time if the time for the variable reduction (e.g., Garfinkel and Nem-
hauser [8]) plus the reduced model’s execution time is less than the execution
time of the full model (variable reduction in a typical U.S. Army problem
resulted in a 25% reduction in solution time and a 75% reduction in storage).

Each MOS /in LR-P2R contains a variable y representing the minimum bonus
multiplier levels permitted in its subordinate cells. This variable has penalty ¢
and the minimum cost r of all variables associated with MOS /. Any variable in
MOS [ with greater penalty than ¢ cannot be in LR-P2R’s optimal solution
because its cost is necessarily greater than r. A second reduction in the number
of variables can be obtained by observing that increasing cost must be offset by
decreasing penalty. Since this variable reduction does not affect the optimal
solution F(A}) = F(A*) = F(A*), where F, represents the objective function
in LR-P2R and A} represents the optimal A for LR-P2R given the reduced
variable set. Again this only occurs when monetary bonuses are restricted to
$20,000 or less.

3.2. Reduction of Case 2—LR-P2

If multiplier levels and bonus ceilings allow bonuses over $20,000, only those
variables with less penalty and a greater percentge of reenlistments with bonuses
over $20,000 than y are dominated. Typically, however, this reduction is small
and the manipulation of the resulting variable set to solve LR-P2 (up to 463,000
variables for a single perturbation of the Army’s FY87 data) suggested a heuristic
to reduce the number of model variables and solution time while finding a
solution near F(A*). Of the several schemes tested the one resulting in consid-
erable time improvement and whose solution approached that of the unrestricted
model was to implement the variable reduction outlined in the previous section,
i.e., restrict initial model solution to those variables in each MOS whose penalty
was less than ¢ and whose increased cost was offset by decreased penalty. Let
A} be the optimal A for LR-P2 using the heuristically reduced set of variables
and let F,(A}) represent the corresponding objective function value. Then if
A = 0 at Af, F(AF) = F(A*), and we are done; i.e., the heuristic variable
reduction did not eliminate any variable in the optimal solution of LR-P2. How-
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ever, if A, # 0 at A}, then F(AF) = F,(A}) and the user has an option to accept
the restricted solution F(A) or use A as an initial guess to continue the search
for F(A*).

4. MARGINAL RATE-OF-RETURN HEURISTIC

It seems reasonable to expect that the best feasible solution obtained in the
process of optimizing LR-P2 would require the expenditure of nearly the entire
SRB budget. There might, however, be some budget dollars remaining that
could be apportioned to further reduce the objective value of the best feasible
solution (the present upper bound) if the model constraints simultaneously re-
main feasible. Accordingly, a heuristic method for allocating residual bud-
get resources was developed using the concept of marginal rate of return
(Everett [6]).

Having obtained the optimal set of SRB multipliers from LR-P2*, the addi-
tional cost due to incrementing each MOS’s multiplier set to its next best penalty,
i.e., increase each MOS’s budget allocation and thus decrease its penalty, is
calculated for all those MOSs with multiplier sets not already at their maximum
values. If the incremental amount required for an MOS is less than the unal-
located portion of the budget and would not cause a violation in the high-level
bonus constraint, it is possible to increment that MOS’s multiplier set and remain
feasible. Thus, the incremental improvement in the objective function per dollar
spent in MOS [ is defined to be

Cmt — C’—I
ROR, = -F—*,
s — T

where ¢z, 17 and o1y represent the penalty and resource requirements as-
sociated with the best yet and next best multiplier set for MOS /, respectively.
In the heuristic procedure, the MOS with the maximum ROR, that does not
cause a violation in the model constraints has its multiplier set modified. The
budget and high-level bonus constraints are updated and the process is repeated
until it is no longer possible to decrease the penalty of any MOS and remain
feasible. The resulting set of SRB multipliers gives an upper bound for the SRB
multiplier problem and is accepted as the finai solution.

One problem can arise with the above procedure: In optimizing the Lagrangian
function, no feasible solution may ever be found. In fact, this occurred in 1 of
50 test problems described in the next section. In this case we have implemented
a “deletion heuristic” to find a good solution. This heuristic uses the concept of
marginal rate of return in the reverse of what is described above, i.e., starting
with the infeasible solution at A*, the multiplier set is reduced for that MOS
which yields the greatest decrease in infeasibility for the least increase in penalty.
This is repeated until feasibility is obtained.

Other heuristic improvement procedures are possible but were not imple-
mented in this study. For example, by simultaneously incrementing one MOS’s
multiplier set while decrementing another’s, it might be possible to improve the
upper bound established with the marginal rate-of-return heuristic while also
remaining feasible with respect to both the bonus and high-level budget con-
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straints. In fact, problem P2 could be solved to optimality using a branch-and-
bound algorithm, though the large number of decision variables might make
this intractable. Pursuing strict optimality with the resultant increase in algo-
rithmic complexity and solution times was not deemed worthwhile in light of
the good solutions that have been consistently obtained for various data sets
and objective functions.

5. COMPUTATIONAL RESULTS

U.S. Army requirements for FY87 (bonus ceiling of $20,000 and maximum
SRB multiptiers of 3, 3, and 0 in zones A, B, and C respectively) effectively
eliminate the high-level bonus constraint (9) in P2 and yield a model with 12,992
binary variables and 273 constraints. This model is solved in 1.67 seconds on an
IBM 3033AP under the VM/CMS operating system using VS Fortran 77. Model
construction, including data manipulation, variable reduction, and other func-
tional computations, required 1.50 seconds. The resulting model of 3072 vari-
ables was solved to within 0.0005% error in 0.15 seconds and required 99.97%
of the authorized budget. In 0.02 seconds the marginal rate-of-return heuristic
improved the solution to within 0.00002% and utilized 99.99% of the budget.

Because the solution procedure is a heuristic and might be sensitive to data
changes, FY87 data obtained from the U.S. Army Personnel Center were per-
turbed to determine model robustness. Test 1 consisted of 100 model runs and
restricted model execution to the U.S. Army requirements described above.
Again the U.S. Army restrictions effectively eliminate the high-level bonus
constraint (9) and produce 0-1 integer programs with 273 constraints and 12,992
variables. The data: Ay, Dy, Eyy, Pry, Ry(x4), and Cyy were perturbed as follows:

d* =d x U, (13)

where d* is perturbed datum,
d is original datum, and,
U is uniform (0.5, 1.5) random variate.
Any data originally integer, such as reenlistment targets, were rounded down
to the nearest integer after being perturbed. In addition, reenlistment response
rates were necessarily capped at 1. Model error was computed as follows:

_F-F

€ = Ta (14)

where F and F represent, respectively, the best feasible solution and the max-
imum Lagrangian function evaluation of LR-P2 discovered during model solu-
tion.

Test 1 solutions with variable reduction required an average of 1.68 seconds
for each run with a maximum run of 1.84 seconds. Without variable reduction
the average time of solution and storage requirements increased 25% and 400%,
respectively. Approximately 90% of the solution time is utilized for data ma-
nipulation, variable reduction, and the functional computations required to con-
struct the model (denoted “Development” in Table 1). Given the reduced vari-
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Table 1. Summary of the results for U.S. Army FY87 data and restrictions perturbed
100 times.

Time (sec) Budget Error
Run Development  Solver Heuristic Total  Solver Final Solver Final
Average 1.50 0.16 0.02 1.68 99.40% 99.99% 0.00878% 0.00025%
Best 1.38 0.11 0.00 1.52 99.99% 99.99% 0.00012%  0.00000%
Worst 1.56 0.30 0.06 1.84 97.12% 99.99% 0.04830% 0.00274%

able set, an average of 0.16 seconds was needed to discover A*, the optimal
Lagrangian solution (denoted “Solver”). In a negligible amount of time, the
marginal rate-of-return heuristic (denoted “Heuristic’’) improved the average
initial solution’s error from 0.0088% to 0.0003% and increased budget expend-
iture from 99.40% to 99.99%. Other Test 1 results are included in Table 1.

In order to test the full generality of the solution procedure, a relaxed version
of the U.S. Army problem was solved. Test 2 permitted model execution up to
Congressional restrictions, i.e., a maximum bonus of $30,000 with allowable
SRB multipliers of 6, 6, and 6 in zones A, B, and C. Thus, both constraints (8)
and (9) in P2 were enforced during the solution procedure. Test 2 consisted of
50 model runs and yielded 0-1 integer programs with 274 constraints and up to
463,000 variables. In Test 2, model solutions with heuristic variable reduction
required an average of 106.22 seconds with a maximum run of 166.72 seconds
(solution times without heuristic variable reduction ranged from 11 minutes to
2 hours using an in-core/out-of-core algorithm). Approximately 70% of the
solution time was utilized for data manipulation, heuristic variable reduction,
functional computations, and storage of the variable set for the evaluation of
F(A}) (“Development”). The discovery of the Lagrangian solution F,(A)) and
the evaluation of F(A}) required an average of 28.66 seconds (Solver). The
majority of this time was for evaluating F(A) using information stored out of
core. Only one of 50 runs required a deletion heuristic (elimination of costly
SRB multiplier sets) to be used on the solution at A;" to improve the run’s upper
bound. For all runs the error even prior to the marginal rate-of-return heuristic
was less than 0.14%, which did not warrant a continued search for A*. Again,
using a negligible amount of time, the marginal rate-of-return heuristic improved
the average initial solution’s error from 0.0304% to 0.0088% . Other Test 2 results
are included in Table 2.

Table2. Summary of the results for U.S. Army FY87 data and Congressional restrictions
perturbed 50 times.

Time (sec) Budget Error
Run Development Solver Heuristic Total  Solver Final Solver Final
Average 77.55 28.66 0.02 106.22 99.02% 99.99% 0.03041% 0.00878%
Best 38.22 0.24 0.01 53.09 99.99% 99.99% 0.00034% 0.00002%

Worst 140.44 58.75 0.05 166.72  93.35% 99.99% 0.13947% 0.09615%
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6. CONCLUSIONS

Selective Reenlistment Bonus (SRB) Programs are major personnel manage-
ment tools that encourage enlisted personnel to reenlist in their critical MOS
and zone combinations instead of leaving military service. In this article an
objective function to measure a program’s effectiveness is developed together
with a mathematical program and marginal rate-of-return heuristic that approx-
imately optimize the objective function subject to budgetary and high-level bonus
constraints. A preliminary version of this model, implemented on a microcom-
puter, has been used by the U.S. Marine Corps since 1986 (DeWolfe [3]). The
new model is an improvement over the Marine Corps model in that it considers
cell manning dependent upon the manning of the parent MOS and also allows
consideration of the complicating high-level bonus constraint. The new model
is currently being implemented by the U.S. Army and will initially be used for
determining future SRB program budgets.

The model and solution methodology are very general and only require that
interactions among MOSs be prohibited. Other penalty and resource utilization
functions are readily accommodated by this model. Improvements in response
rate estimates (Cymrot [2] and Streff [12]), should further increase the accuracy
with which the model’s multipliers achieve their predicted cell targets.

The future portends increasingly restrictive budgets within the Department
of Defense, additional pressure to maximize benefits given limited resources,
and intense competition with civilian industry to maintain specially trained per-
sonnel within the military. With respect to maximizing the benefits realized from
an SRB program, a nearly optimal assignment of SRB multipliers with respect
to budgetary and Congressional restrictions goes far towards achieving that goal.
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